首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1458篇
  免费   90篇
  国内免费   4篇
  2023年   18篇
  2022年   14篇
  2021年   55篇
  2020年   32篇
  2019年   30篇
  2018年   45篇
  2017年   48篇
  2016年   56篇
  2015年   92篇
  2014年   106篇
  2013年   116篇
  2012年   140篇
  2011年   151篇
  2010年   81篇
  2009年   55篇
  2008年   61篇
  2007年   73篇
  2006年   53篇
  2005年   46篇
  2004年   50篇
  2003年   27篇
  2002年   36篇
  2001年   18篇
  2000年   10篇
  1999年   17篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   12篇
  1988年   5篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1971年   3篇
  1966年   1篇
排序方式: 共有1552条查询结果,搜索用时 31 毫秒
31.
Tho  N. P.  Son  L. T.  Tho  N. T.  Cuong  B. D.  Toan  H. P.  Khanh  H. Q.  Thanh  N. H. 《Microbiology》2021,90(4):527-537
Microbiology - Lactobacilli are able to produce exopolysaccharides (EPSs) with a wide diversity in structure and composition. However, changes in EPS production under environmental challenges are...  相似文献   
32.
Background aimsMesenchymal stem/stromal cells (MSCs) are of interest for the treatment of graft-versus-host disease, autoimmune diseases, osteoarthritis and neurological and cardiovascular diseases. Increasing numbers of clinical trials emphasize the need for standardized manufacturing of these cells. However, many challenges related to diverse isolation and expansion protocols and differences in cell tissue sources exist. As a result, the cell products used in numerous trials vary greatly in characteristics and potency.MethodsThe authors have established a standardized culture platform using xeno- and serum-free commercial media for expansion of MSCs derived from umbilical cord (UC), bone marrow and adipose-derived (AD) and examined their functional characteristics.ResultsMSCs from the tested sources stably expanded in vitro and retained their biomarker expression and normal karyotype at early and later passages and after cryopreservation. MSCs were capable of colony formation and successfully differentiated into osteogenic, adipogenic and chondrogenic lineages. Pilot expansion of UC-MSCs and AD-MSCs to clinical scale revealed that the cells met the required quality standard for therapeutic applications.ConclusionsThe authors’ data suggest that xeno- and serum-free culture conditions are suitable for large-scale expansion and enable comparative study of MSCs of different origins. This is of importance for therapeutic purposes, especially because of the numerous variations in pre-clinical and clinical protocols for MSC-based products.  相似文献   
33.
The study is based on four leaf parameters: leaf width (LW), lobe length (LL), leaf size (LS) and leaf shape which is calculated as LW to leaf length (LW/LL) ratio. Under different environmental conditions, LL is an isometric character, LW shows positive allometry, whereas LW/LL shows negative allometry. Regression analysis results indicated that there is no significant difference either in slopes or in regression coefficients between investigated sites. Thus, in this study, we found that allometric relationships between leaf parameters and LS are character specific and that they tended not to differ significantly between Tilia cordata Mill. outer leaves exposed to different environmental conditions. Also, there are no significant interpopulation differences for both principal component PC1 and PC2 scores. The stepwise discriminant functional analysis results allowed us to identify a set of two leaf parameters (LS and LL) with a moderate discriminating ability (59.8%). T. cordata outer leaves are significantly larger and broader in the reference area (R-leaves) than leaves from polluted (P-leaves) site. The data also indicated that there is a relatively larger petiole size in R-leaves than in P-leaves. We found that in P-leaves, LW increased faster with increasing LS than in R-leaves.  相似文献   
34.
Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential mechanisms. For this purpose, the mTeSR®1 hESC culture media was either modified to an alkaline pH of 8.1 or supplemented with 0.4–40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM, however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-based implants/scaffolds.  相似文献   
35.

Background

The pathogenesis of dengue shock syndrome (DSS, grade 3 and 4) is not yet completely understood. Several factors are reportedly associated with DSS, a more severe form of dengue infection that reportedly causes 50 times higher mortality compared to that of dengue patients without DSS. However, the results from these reports remain inconclusive. To better understand the epidemiology, clinical manifestation, and pathogenesis of DSS for development of new therapy, we systematically reviewed and performed a meta-analysis of relevant studies that reported factors in both DSS and dengue hemorrhagic fever (DHF, grade 1 and 2) patients.

Methods and Findings

PubMed, EMBASE, Scopus, Google Scholar, Dengue Bulletin, Cochrane Library, Virtual Health Library, and a manual search of reference lists of articles published before September 2010 were used to retrieve relevant studies. A meta-analysis using fixed- or random-effects models was used to calculate pooled odds ratios (OR) or event rate with corresponding 95% confidence intervals. Assessment of heterogeneity and publication bias, meta-regression analysis, subgroup analysis, sensitivity analysis, and analysis of factor-specific relationships were further performed. There were 198 studies constituting 203 data sets that met our eligibility criteria. Our meta-regression analysis showed a sustained reduction of DSS/dengue hemorrhagic fever (DHF) ratio over a period of 40 years in Southeast Asia, especially in Thailand. The meta-analysis revealed that age, female sex, neurological signs, nausea/vomiting, abdominal pain, gastrointestinal bleeding, hemoconcentration, ascites, pleural effusion, hypoalbuminemia, hypoproteinemia, hepatomegaly, levels of alanine transaminase and aspartate transaminase, thrombocytopenia, prothrombin time, activated partial thromboplastin time, fibrinogen level, primary/secondary infection, and dengue virus serotype-2 were significantly associated with DSS when pooling all original relevant studies.

Conclusions

The results improve our knowledge of the pathogenesis of DSS by identifying the association between the epidemiology, clinical signs, and biomarkers involved in DSS.  相似文献   
36.
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.  相似文献   
37.

Background

Autism spectrum disorders (ASDs) are caused by both genetic and environmental factors. Mitochondria act to connect genes and environment by regulating gene-encoded metabolic networks according to changes in the chemistry of the cell and its environment. Mitochondrial ATP and other metabolites are mitokines—signaling molecules made in mitochondria—that undergo regulated release from cells to communicate cellular health and danger to neighboring cells via purinergic signaling. The role of purinergic signaling has not yet been explored in autism spectrum disorders.

Objectives and Methods

We used the maternal immune activation (MIA) mouse model of gestational poly(IC) exposure and treatment with the non-selective purinergic antagonist suramin to test the role of purinergic signaling in C57BL/6J mice.

Results

We found that antipurinergic therapy (APT) corrected 16 multisystem abnormalities that defined the ASD-like phenotype in this model. These included correction of the core social deficits and sensorimotor coordination abnormalities, prevention of cerebellar Purkinje cell loss, correction of the ultrastructural synaptic dysmorphology, and correction of the hypothermia, metabolic, mitochondrial, P2Y2 and P2X7 purinergic receptor expression, and ERK1/2 and CAMKII signal transduction abnormalities.

Conclusions

Hyperpurinergia is a fundamental and treatable feature of the multisystem abnormalities in the poly(IC) mouse model of autism spectrum disorders. Antipurinergic therapy provides a new tool for refining current concepts of pathogenesis in autism and related spectrum disorders, and represents a fresh path forward for new drug development.  相似文献   
38.
A panel of geochemical techniques is used here to investigate the taphonomy of fossil feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic backscattering (EBS) and particle-induced x-ray emission (PIXE), which are promising techniques for the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, substantial differences exist between these samples, revealing that the organic matter of the fossil feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, despite the morphological preservation of Anchiornis feathers, original proteins, that is keratin, were probably not preserved in the 160-myr-old feathers.  相似文献   
39.
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.  相似文献   
40.

Recent studies continue to find evidence linking Type 2 diabetes (T2D) with Alzheimer's disease (AD), the most common cause of dementia, a general term for memory loss and other cognitive abilities serious enough to interfere with daily life. Insulin resistance or dysfunction of insulin signaling is a universal feature of T2D, the main culprit for altered glucose metabolism and its interdependence on cell death pathways, forming the basis of linking T2D with AD as it may exacerbate Aβ accumulation, tau hyperphosphorylation and devastates glucose transportation, energy metabolism, hippocampal framework and promulgate inflammatory pathways. The current work demonstrates the basic mechanisms of the insulin resistance mediates dysregulation of bioenergetics and progress to AD as a mechanistic link between diabetes mellitus and AD. This work also aimed to provide a potential and feasible zone to succeed in the development of therapies in AD by enhanced hypometabolism and altered insulin signaling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号